Synthesis of Trinuclear Molybdenum Cluster Complex with Novel Skeleton, [Mo₃(μ_3 -CCH₃)(μ_3 -O)(μ -C₆H₅COO)₆(CH₃OH)₃]Cl through Bridging Carboxylate Ligand Substitution Kou NAKATA, Tadashi YAMAGUCHI, Yoichi SASAKI,*,† and Tasuku ITO* Department of Chemistry, Faculty of Science, Tohoku University, Aramaki, Aoba, Sendai 980 [Mo₃(μ_3 -CCH₃)(μ_3 -O)(μ -CH₃COO)₆(H₂O)₃]⁺ undergoes bridging acetates substitution with benzoate ions in CH₃OH-CH₃CN mixed solvent to give [Mo₃(μ_3 -CCH₃)(μ_3 -O)(μ -C₆H₅COO)₆(CH₃OH)₃]⁺, which can never be synthesized in principle by the conventional direct method. Molybdenum in the oxidation state IV is known to form a variety of trinuclear complexes with metal-metal direct bond. 1,2) With carboxylate ions, they give complexes with a characteristic " $Mo_3(\mu_3-O)_2(\mu-RCOO)_6$ " core. In addition to them, alkylidyne capped complexes, $[Mo_3(\mu_3-CCH_3)(\mu_3-O)(\mu-CH_3COO)_6(H_2O)_3]^{+3a-c}$ and $[Mo_3(\mu_3-CCH_2CH_3)(\mu_3-O)(\mu-CH_3CH_2COO)_6(H_2O)_3]^+$, are also reported. They are interesting because they have unique \(\mu_3\)-carbon donor (the carbyne ligand) and yet they are unusually stable in aqueous media. The μ_3 -CR capped complexes were obtained by the reactin of Mo(CO)₆ with a mixture of (RCO)₂O and RCOOH (R=CH₃, CH₃CH₂). The ¹³C tracer study^{3a} showed that the µ₃-CR ligand comes from alkyl group of carboxylic acid or its anhydride and is produced in the process of reduction. Therefore, the alkylidyne complexes so far reported, $[Mo_3(\mu_3-CR)(\mu_3-O)(\mu-RCOO)_6L_3]^+$, have the same R group in the μ_3 -CR and μ -RCOO ligands. The objective of this paper is two-fold: firstly, we found for the first time that carboxylate bridged molybdenum trinuclear complexes do undergo bridging carboxylate substitution; secondly, by utilizing this substitution reaction, we successfully isolated the titled ethylidyne complex which has different R groups in the μ_3 -capping and μ -bridging ligands. Although many molybdenum trinuclear complexes with carboxylate bridges have been reported, 1,2) there has been no report on ligand substitution behavior except for our recent study concerning the terminal ligand substitutions. While investigating the reactivity of molybdenum trinuclear complexes of this type, we found that the bridging acetates in $[Mo_3(\mu_3-X)(\mu_3-X')(\mu-CH_3COO)_6(H_2O)_3]^{n+}$ can fully or [†] Present address: Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060. partly be substituted by other carboxylates (RCOO-) including amino acid under certain conditions. The ease with which the substitution takes place appears to depend on the kind of the trinuclear core unit, "Mo₃(μ_3 -X)(μ_3 -X')",⁵⁾ and the difference in pK_a values between incoming (RCOO-) and leaving acetate.⁶⁾ The titled compound [Mo₃(μ_3 -CCH₃)(μ_3 -O)(μ -C₆H₅COO)₆(CH₃OH)₃]+ was prepared as follows (Eq. 1). $[Mo_3(\mu_3\text{-CCH}_3)(\mu_3\text{-O})(\mu\text{-CH}_3\text{CO}_2)_6(\text{H}_2\text{O})_3]^+$ $$\frac{C_6H_5CO_2H}{CH_3OH/CH_3CN} > [Mo_3(\mu_3-CCH_3)(\mu_3-O)(\mu-C_6H_5CO_2)_6(CH_3OH)_3]^+$$ (1) [Mo₃(μ₃-CCH₃)(μ₃-O)(μ-CH₃COO)₆(H₂O)₃]Cl·6H₂O^{3a,4}) (0.5 g) was dissolved in CH₃OH (20 cm³) and diluted with CH₃CN (100 cm³). To this solution, benzoic acid (1.0 g) and a few drops of Et₃N were added and the resulting orange solution was refluxed for 45 min. The solution was acidified with 0.5 M HCl (20 cm³) and evaporated to dryness (M = mol dm⁻³). Orange residue was washed throughly with Et₂O to remove unreacted benzoic acid. The resulting solid was again dissolved in CH₃OH (500 cm³) and purified by a Dowex 50W-X2 cation exchange column (H⁺ form). The orange band was eluted with 0.1 M HCl/CH₃OH solution. The eluate was concentrated to ca. 50 cm³ and allowed to stand for a day at room temparature, to give orange solid (Yield 0.25 g). Recrystallization from methanol gave orange columnar crystals of [Mo₃(μ₃-CCH₃)(μ₃-O)(μ-C₆H₅COO)₆(CH₃OH)₃|Cl·3CH₃OH.⁷) This compound crystallizes in triclinic space group $P\bar{1}$ with Z=2.8) The X-ray structure of the complex cation is illustrated in Fig. 1. The bridging ligands are fully replaced by benzoate ions, and the "Mo₃(μ_3 -CCH₃)(μ_3 -O)" core unit remains unchanged. The complex ion has a pseudo C₃ axis passing through the μ_3 -C and μ_3 -O atoms. Three terminal positions are occupied by CH₃OH and overall trinuclear structure resembles those of structurally characterized analogues, [Mo₃(μ_3 -CCH₃)(μ_3 -O)(μ -CH₃COO)₆(H₂O)₃]⁺ and [Mo₃(μ_3 -CCH₂CH₃)(μ_3 -O)(μ -CH₃CH₂COO)₆(H₂O)₃]⁺.3c) The Mo-Mo distances range from 2.756(2) to 2.808(2) Å, indicating the presence of the Mo-Mo direct bond as in the analogues.⁹) The cyclic voltammogram of the benzoate complex $[Mo_3(\mu_3-CCH_3)(\mu_3-O)(\mu-C_6H_5COO)_6(CH_3OH)_3]^+$ in CH_3OH exhibits a reversible one electron redox wave corresponding to $Mo_3(IV,IV,IV)/(IV,IV,V)$ at +0.28 V vs. Ag/Ag^+ . The corresponding $E_{1/2}$ value of the acetate complex $[Mo_3(\mu_3-CCH_3)(\mu_3-O)(\mu-CH_3COO)_6(CH_3OH)_3]^+$ is at +0.20 V vs. Ag/Ag^+ . The $E_{1/2}$ value of the benzoate complex shifts far positively, reflecting a decrease in pK_a of the bridging ligands. A similar relation between $E_{1/2}$ and pK_a of bridging ligands is known for trinuclear Fe(III) complexes 11 and dinuclear Ru(III) complexes. Further related works are now in progress. Fig. 1. The structure of $[Mo_3(\mu_3-CCH_3)(\mu_3-O)(\mu-C_6H_5COO)_6(CH_3OH)_3]^+$. Selected bond distances (Å) and angles (°): Mo1-Mo2 2.756(2), Mo1-Mo3 2.808(2), Mo2-Mo3 2.784(2), Mo1-C1 2.06(2), Mo2-C1 2.07(2), Mo3-C1 2.10(2), Mo1-O1 1.96(1), Mo2-O1 1.95(1), Mo3-O1 2.00(1), Mo1-Mo2-Mo3 60.91(6), Mo1-Mo3-Mo2 59.05(6), Mo2-Mo1-Mo3 60.04(6). This work was supported by Grant-in-Aids for Scientific Research No.02303006 and No. 01430009 (Priority Area of "Molecular Approaches to Non-equilibrium Process in Solution") from the Ministry of Education, Science, and Culture, Japan. ## References - 1) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 5th ed, Wiley, New York (1988), p. 824. - 2) F. A. Cotton, Polyhedron., 5, 3 (1986), and references cited therein. - a) A. Bino, F. A. Cotton, Z. Dori, and B. W. S. Kolthammer, J. Am. Chem. Soc., 103, 5779 (1981); b) A. Bino, F. A. Cotton, Z. Dori, L. R. Falvello, and G. M. Reisner, Inorg. Chem., 21, 3750 (1982); c) A. Bino, F. A. Cotton, and Z. Dori, J. Am. Chem. Soc., 103, 243 (1981); d) A. Bino and D. Gibson, Inorg. Chim. Acta, 65, L37 (1982). - 4) K. Nakata, A. Nagasawa, N. Soyama, Y. Sasaki, and T. Ito, *Inorg. Chem.*, 30, 1575 (1991). In this paper, we found that the CCH₃-cap shows remarkable labilizing effect for the substitution of the terminal unidentate ligand. - 5) We have investigated the bridging acetate substitution of $[Mo_3(\mu_3-X)(\mu_3-X')(\mu-CH_3COO)_6(H_2O)_3]^{n+}$ (X=X'=O; X=CCH₃, X'=O) by other carboxylates such as benzoate, monochloroacetate, and alanine, and found that the complex having the "Mo₃(μ_3 -CCH₃)(μ_3 -O)" core unit undergoes much faster substitution. This is the case with the rate of the terminal ligand substitution.⁴) (K. Nakata, Ph. D. Thesis, Tohoku University, Sendai, 1992). Details will be reported elsewhere. - 6) As pK_a of the incoming carboxylate becomes lower, the bridging ligand substitution is difficult to occur or only partial substitution takes place. (K. Nakata, Ph. D. Thesis, Tohoku University, Sendai, 1992). Details will be reported elsewhere. - 7) Elemental analysis. Found: C , 45.74 ; H , 4.46 ; Cl , 2.88%. Calcd for $C_{50}H_{57}O_{19}Cl-Mo_3$: C , 46.73 ; H , 4.47 ; Cl , 2.76%. ¹H NMR (CD₃OD) δ =2.40(s, 3H μ_3 -CCH₃), 7.0-9.0(m, 30H μ -C₆H₅COO). ¹³C{¹H} NMR (CD₃OD) δ =32.5(μ_3 -CCH₃), 129.3, 129.5, 131.0, 131.1, 132.3, 132.5, 133.8, 134.0(μ -C₆H₅COO), 178.3, 178.6(μ -C₆H₅COO), 296.4(μ_3 -CCH₃). Absorption maxima in CH₃OH: λ_{max} =338 nm (ϵ /M⁻¹ cm⁻¹ per Mo₃ = 14400). - 8) The crystal $(0.20\times0.25\times0.10~\text{mm}^3)$ sealed in a glass capillary was used for data collection. Crystal data: $[\text{Mo3}(\mu_3\text{-CCH}_3)(\mu_3\text{-O})(\mu\text{-C}_6\text{H}_5\text{COO})_6(\text{CH}_3\text{OH})_3]\text{Cl}\cdot3\text{CH}_3\text{OH}$, $C_{50}\text{H}_{57}\text{O}_{19}\text{ClMo}_3$, fw= 1285.26, triclinic, space group $P\overline{1}$, a=11.960(3) Å, b=22.317(7) Å, c=10.235(6) Å, $\alpha=96.44(4)$ °, $\beta=91.43(4)$ °, $\gamma=89.86(3)$ °, V=2714(2) Å³, Z=2, $d_{\text{calcd}}=1.573$ g cm⁻³, $d_{\text{obsd}}=1.54$ g cm⁻³ (floatation method). Data were collected on a Rigaku AFC-5R diffractometer at 13°C with graphite-monochromated Cu K α radiation. A total of 8215 reflections were obtained and independent 4924 reflections with $|F_0|>3\sigma|F_0|$ were used in the structure determination. Though counter anion, Cl⁻, was disordered and its positon could not be determined, the presence of Cl⁻ has been confirmed by the elemental analysis and the specific gravity measurement. The current R factor is 0.09. - 9) The Mo-Mo distances reported for $[Mo^{IV}_{3}(\mu_{3}-X)(\mu_{3}-X')(\mu-RCOO)_{6}(H_{2}O)_{3}]^{n+}$ range from 2.742 to 2.767 Å.²) - 10) Cyclic voltammograms were measured in CH₃OH containing n-Bu₄NPF₆(0.1 M) with glassy carbon working-, Pt counter- and Ag/Ag⁺ (0.1 M AgClO₄ in CH₃OH) reference electrodes. - 11) K. Nakata, A. Nagasawa, Y. Sasaki, and T. Ito, Chem. Lett., 1989, 753. - 12) P. Neubold, K. Wieghardt, B. Nuber, and J. Weiss, *Inorg. Chem.*, 29, 459 (1989). (Received March 27, 1992)